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The existing theory of direction-sensitive electro diffusion probes for the wall shear rate measure­
ment is extended by including normal flow effects. 

Circular electrodiffusion probes consisting of three segments have been used recently 
for the measurements of wall shear rates in two-phase gas-liquid flows1 ,2. The response 
of such probes consists of three current signals. By treating simultaneously this 
multiple signal, it is possible to determine both the magnitude and direction of 
vectorial wall shear rate3 . Until now, the treatment of the multiple current signal has 
been based on the calibration data obtained under viscometric conditions4 , i.e. 
in a steady unidirectional flow with constant wall shear rate. 

Such conditions can be met neither in two-phase nor turbulent flows. Particles, 
bubbles, or turbulent eddies generate three-dimensional fluctuating flow structures 
even in the close proximity of walls. A question arises of interpreting the multiple 
current signal produced by the segmented probes under such nontrivial circumstances. 
From the deterministic point of view, the complicating factors can be understood as 
a superposition of velocity fluctuations and the non-zero velocity component normal 
to the wall. 

The dynamics of the response of electrodiffusion probes on fluctuating shear rates 
has been studied by several authors S -7. The analyses coincide in specifying a broad 
region of conditions - frequencies of flow fluctuations, mean shear rates, and 
probe sizes - under which the response of the probe reflects just the immediate 
velocity field of a varying flow. The response of the probe under these (so called 
quasi-steady) conditions is the same as for a steady flow. Such a transport regime is 
exclusively assumed in the present study of the normal flow effects. The response 
of segmented electrodiffusion probes is analyzed for steady three-dimensional velo­
city fields. A simple two-dimensional flow is considered first to demonstrate the 
essential features of convective diffusion in the presence of a normal flow com-
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ponent. Further, the directional characteristics are computed for segmented circular 
probes in two-dimensional flows of varying direction which represent an important 
subclass of the general three-dimensional flows. 

Because of problems commonly met in realizing a well-controllable non-viscometric 
flow, calibrations of real (i.e. geometrically imperfect) segmented probes are limited 
to the measurements under viscometric conditions. The subject of primary interest 
in electrodiffusion diagnostics of multiphase flows is to use this calibration informa­
tion in a way which covers a broader region of flow conditions. It is shown in the 
discussion how the proposed theory can be used for this aim. 

THEORETICAL 

Three-Dimensional Kinematics of Flow in the Diffusion Layer 

Electrodiffusion probes are used for measurement of local flow characteristics and, 
therefore, they are constructed as small as possible. This allows to simplify remarkably 
the relevant mass transfer theory. 

The overall transport resistance is concentrated in a thin diffusion layer close to 
the probe surface. For this reason, the equation of convective diffusion can be 
considered in the simplified form: 

(l) 

The thinness of the diffusion layer allows us to deal with a simplified description of 
the velocity field close to the wall: 

v x = q x( x. y) z , 

Vy = qy(x,y)=. 

Vz = -(dxqx + dyqy) =2/2. 

The two-dimensional fields qx, qy can be linearized over the surface of the probe. 
The resulting linear representation involves six local kinematic coefficients: 

qx = q~ + q~xx + q~yy , 
qy = q~ + q~xx + q~yY . 

(3) 

We consider here only a three-parameter subclass of linearized spatial velocity fields 
which fulfil the following conditions: 

1) The surface streamlines are parallel each to other at the probe surface, q~/q~ = 
= q~x/q~x = q~y/q~y. This means that we can find a "proper" coordinate system 
(x'. y') for which we have dyq = O. 
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2) There is no vorticity normal to the probe surface, q~y = q~x' This means that q ~ 
depends only on the x coordinate in the "proper" system. 

3) There is no critical point at the probe surface, q~ + q~ > O. This means that 
we have qx > 0 in the "proper" system. 

Under these assumptions, the new coordinates (x', y') can be found, 

x' = x cos (B) - y sin (B) , 

y' = x sin ( B) + Y cos ( B) , (4) 

in which the considered class of linear velocity fields is represented in the following 
t\vo-dimensional way: 

V x ' = (q + 2Ax') z , 

Vy ' = 0, (5) 

From the observer's point of view, the kinematics under consideration is represented 
by the three parameters q, A, B standing for the shear rate magnitude at the probe 
centre, the normal flow component, and the flow direction relative to the observer's 
frame of reference, respectively. Note that the origin (x, y) = (0,0) corresponds 
always to the probe centre. 

TlI'o-Dimensional Case 

Let us first assume that the flow direction is known in advance, B = 0, and a strip­
-shaped electrodiffusion probe is placed perpendicular to the flow direction. The 
corresponding problem of two dimensional convective diffusion ",as solved in the 
classical works for arbitrary local shear rates, q = q(x), i.e. for the following two­
-dimensional velocity field: 

t'x = q(x) z , 

l' = z 
_ dq(x} -2(2 

dx - I , 

(6) 

(7) 

aS~lIming lJ(X) > 0 for x E (Xo, XL), where x = Xo and x = XL stand for the leading 
and rear edges of the probe, respectively. For constant bulk concentration Co and 
zero surface concentration of a depolarizer, the resulting expression for limiting 
diffusion currents is given by7.8: 

(8) 
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where w stands for the width of the strip probe in the direction perpendicular to the 
flow and 

31/ 3 
k = --- nFc V 2/ 3 • 

2r(4j3) 0 
(9) 

For the viscometric case, q = q = const, A = 0, this result reduces to the well­
-known formula given first by Leveque: 

(10) 

where L stands for the length of the probe, 

(11) 

For the linear case, q = q + 2Ax, we obtain 

(12) 

where 

x = ALlq. (13) 

This result can be further simplified for x ~ ° to provide: 

In particular, if x = 0 actually corresponds to the probe centre, Xo = -L/2, XL = 
+ Lj2, the asymptote (14) red uces to: 

(15) 

The total current to a single probe depends nearly exclusively on the mean shear 
rate q and is almost insensitive to the normal flow component. 

Let us consider now a probe consisting of two parallel strips, x E (-L/2, 0) and 
x E (0, + LI2), of the same length L/2. By using Eq. (12), the following two relations 

(. . )/. _ + x - - x (1 0'028 2) [( 1 )3/2 (1 )3 /2J2/3 
1 J + 12 1 * - ---- - ::::: - x 

3x 
(16a) 

Collect. Czech. Chem. Commun. (Vol. 54) (1989) 



Segmented Electrodiffusion Probes 3047 

i 2 /i l = -1 + ~ 0'587(1 + 0'450" + 0'094,,2), (16b) [ (1 + ,,)3/2 - (1 - ,,)3/2J2/3 
1-(1_,,)3/2 _ 

can be derived for the currents, i1 = jS( -L/2, 0) and j2 = jS(O, +L/2), to the indivi­
dual strip segments. From these formulae it is obvious that the normal flow parameter 
A can be determined from the ratio of the partial currents, i.e. the currents to the 
individual segments. In contrast to the total current i1 + i2 , which is almost inde­
pendent of A, the ratio idi2 strongly depends on A and can be used for determination 
of the normal velocity component. The sensitivity of segmented probes to the normal 
velocity component is nearly proportional to the size of the probe. 

Current to a Sector of a Circular Probe 

We shaIl consider segmented circular probes which consist of several sectors. For 
the moment we shall consider only a particular orientation of the sectors, as shown 
in Fig.l. One of the arms of the sector is parallel to the flow direction and its arc 
forms the leading edge of the probe. As a result, both the shape and orientation are 
given by two parameters (R, {3). 

The partial current can simply be calculated by quadratures. The area of the 
sector is divided into a set of paraIlel strips of differential width w = dy. Their 
position relative to a given velocity field is specified by the coordinates Xo = xo(y), 
XL = xdY), see Fig. 1. The angular variable t can conveniently be used instead of the 
Cartesian one, Y = R sin (t). After the corresponding substitutions in Eq. (12), the 
current di to a differential strip is given as 

di = ikJ(t) cos (t) dt , (17) 

FIG.l 

Geometric parameters of convex sectors of 
a circle in basic position, i.e. with one of the 
arms parallel to the flow direction; sector 
with sharp angle, 0 < P < 'It/2, and sector 
with obtuse angle, 'It/2 < P < 'It 
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where 

f(t) = [(1 + XXL*)3/2 - (1 + XXO*)3/2]2/3 , 

3x 

x = 2ARI(ii) , 

kR = k(ii)1/3 (2R)s/3 , 

x~(t) = xo(Y)IR, x~(t) = xL(y)IR . 

For a sharp-edged sector, ° < P < rr/2, we have 

x~ = - cos (t), x~ = - sin (t) cot (p), 

and the current can be expressed by a single integral, as follows: 

(18) 

(19) 

(20) 

(21) 

(22) 

i(P) =ffJ[{1 - x sin(t)cot (P)f3/2 - {I - X cos (t)j3/2]2/3 cos(t)dt. (23) 
kR/2 0 3x 

For a sector with an obtuse angle, rr/2 < P < rr, the function x~(t) consists of two 
branches for ° < t < rr - P and for rr - P < t < rr/2, see Fig. 1. Consequently, the 
integration interval must be divided into two parts: 

_ = J l I cos (t) dt + i(P) f"-fJ [{ 1 + x sin (t) cot (rr - P)13/2 - f 1 - x cos (t)13 /2J2 / 3 

kR/2 0 3x 

+ l I J_ cos(t)dt. f"i 2 ['f 1 + x cos (t)l 3/2 - {l - x cos (t)P/2]2/3 

n-fJ 3x 
(24) 

The total current to a circular probe can be expressed as the sum of two identical 
terms i(f3) for P = rr: 

i lol = 2i(rr) = kR I cos (t) dt. (25) f"/2 [{l + x cos (t)}3/2 - {1 - x cos (t)1 3/2J2,'3 

o 3x 

For the special case of no normal flow component, x -+ 0, we obtain the known 
results -7: 

[
/2 (3/2)1/3 rrl/2 

i = i == k COSS/3 t dt = .. nFc D2/3 RS/3ii 1/3 . 
lot * R 0 r(1l/6) , 0 

(26) 

The effect of the normal flow component on the total current is represented by the 
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correction factor 

(27) 

For low and moderate x, E can be expressed by the asymptotic expansion: 

E(x) ~ 1 - ~ x2 __ 1_ X4 _ •••• 

99 309 
(28) 

This effect is very weak and does not depend on the orientation of the normal flow 
component (to - or from the surface). The exact values of E are given in Table I. 

Let us now consider a convex sector in general, as shown in Fig. 2. The angle 
'Y. E (0, n/2) and the radius R specify both the shape and size of the sector and the 
angle e indicates its orientation relative to the flow direction. Let us assume the 
total current i tot to be known for the given velocity field and probe radius R. It is 
convenient to express the current i( e. O() to the sector in the form 

i( e, O() = G( e, «) i tot , (x = const). (29) 

Let us further define the auxiliar function 

R(P) = i(P)/i tot , (x = const) , (30) 

for the sector with one of the arms parallel to the flow direction, i.e. for 0( = P/2, 
e = P/2. The function R(P), 0 < P < n, can be calculated according to the for-

TABLE I 

Effect of the normal flow component on the total current to a circular electrode 

o 
±O'loo 
±0'2oo 
±0'333 
±O'SOO 
±0'667 
±1-Ooo 
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1'0000 
0'9998 
0'9987 
0'9977 
0'9947 
0'9903 
0'9743 

2 2 
1- -x 

99 

1'0000 
0'9998 
0·9987 
0'9978 
0'9949 
0·9910 
0'9798 



3050 Wein, Sobolik: 

mulae (24)-(26). The following three relations specify the basic functional properties 
of G: its relationship to H 

G(P/2, P/2) = H(P) , (31) 

the mirror symmetry with respect to the flow direction 

G( -e, ex) = G( +e, ex), (32) 

and the additivity of partial currents 

These relations enable us to express the current to an arbitrary convex sector, 
o < ex < 1t/2, by using only the function H. Assuming -1t/2 < e < 21t, we need 
to consider only the following four cases (Fig. 2): 

-ex < e < ex: G(e, ex) = H(e + ex) + H(e - ex), (34a) 

ex < e < 1t - ex: G(e, ex) = H(e + ex) - H(e - ex), (34b) 

1t - ex < e < 1t + ex: G(e, ex) = 1 - H(21t - e - ex) - H(e - ex), (34c) 

7t + ex < e < 21t - ex: G(e, ex) = H(21t - 9 + ex) - H(21t - e - ex). (34d) 

/ 

Flo. 2 

Geometric parameters of a convex sector of a circle and its four different positions a to d cor­
responding to E~ (340) to (34d) 
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RESULTS 

Directional Characteristics of the Circular Sectors 

Till now, we have considered the current to a sector in a specified position relative to 
a given two-dimensional velocity field. On the contrary, the directional characteristic 
specifies the angular dependence of the current to a given sector (a, R = const) 
under varying flow conditions as represented by the parameters A, q, e: 

isli tot == F(e, x) = G(e, a), (a = const; Y.. e variable). (35) 

More precisely, the directional characteristics of a segmented probe consist of a set 
of functions F., (s = 1,2 .. ), for the particular sectors of the probe. The sectors 
need not be of identical shape. Their locations relative to the probe are specified 
by the angular coordinates es of their axes. 

The directional characteristics of the sectors are commonly represented by their 
Fourier coefficients: 

<Xi 

F(e - e •. x) = Bo(a., x) + L Bm(oc., x) cos (m(e - e.)), (36) 
m;l 

Bo(a., x) = - F(t, x) dt , 
1 f2n 

2n 0 
(37a) 

1 f2n Brn(a., x) = - F(t, x) cos (mt) dt. 
n 0 

(37b) 

The even terms in the Fourier series (36) are zero because of the mirror symmetry 
of the sectors with respect to the axes e = es. The Fourier series converge very 
rapidly as manifested by the nearly straigh course of the curves F vs cos (e) (Fig. 3). 

Empirical Representation of Directional Characteristics 

The Fourier coefficients Brn were calculated from the analytical formulae (23), (24), 
(34), (37a, b) for m = 0 ... 10, x E < -1, +1), and a = nli, i = 2 ... 9. The fol­
lowing rules, suggested in our previous work3 , 

(38) 

were satisfied within the accuracy guaranteed in the numerical computations (roughly 
to eight decimal digits). 

Numerical data on the fundamental Fourier coefficients Crn(x) are given in Table II. 
They were further treated by the least squares method to determine the coefficients 
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of the following polynomial representation: 

!O 

Cm(x) = Crn(O) [1 + I Pmixi] . (39) 
i=1 

Numerical experiments showed that the representation (39) with the coefficients 
given in Table III guarantees the accuracy of F to six valid decimal digits. 

Nevertheless, the simple semiempirical formula 

F(8, x) = rt./rr. + [1 - 0'75x - 0'04x 2 ] 0·126 sin (rt.) cos (8) + 
+ [1 - 1·14x - 0'94x 2 ] 0'007 sin (2rt.) cos (28) -

- [1 + 0'46x + 0'42x 2 ] 0·003 sin (3rt.) cos (38) 

(40) 

provides values of F over the full domain of (8, rt., x) accurate to within ± 0·003 which 

TABLE II 

Effect of normal flow component on directional characteristics of radial segments: fundamental 
Fourier coefficients Crn (:1<) 

:1< lOOC! 100C2 100C3 100C4 100Cs 100C6 100C7 

-1'0 22·m\! 0'861 -0'228 -0'108 0'058 0·015 -0'013 
--0'9 20·908 0·927 -0-258 --0'094 0'052 0'017 -0'015 

O'S 19'856 0'957 -0'273 -0'086 0'050 0'017 -0'015 
0·7 18'870 0·966 -0'281 -0'082 0'050 0'017 -0'015 
0'6 17·926 0·960 -0'286 -0'078 0'049 0'017 -0'015 
0'5 17'012 0·942 -0'290 -0'075 0'049 0'017 -0'015 
0'4 16'118 0'914 --c0'292 -0'073 0'049 0'016 -0'015 
0'3 15'236 0'875 -0'294 --0'070 0'049 0'016 -0'015 

- 0·2 14'362 0'827 -0,296 -0'068 0'050 0'016 -0'015 
-0,] 13'490 0'769 -0,299 -0'066 0'050 0'015 -0,015 

0'0 12'613 0'701 -0'303 -0'064 0'050 0'015 -0'015 
0,] 11·730 0'624 -0'308 -0'062 0'051 0'015 -0'015 
0'2 10'833 0'535 --0'316 -0'060 0'051 0'015 -0'015 
0'3 9·917 0·434 -0'327 -0'059 0·052 0'014 -0'015 
0·4 8·976 0'320 -0,341 -0'059 0'052 0·014 -0'016 
0'5 8·003 0·189 -0'361 -0'059 0'053 0'014 -0'016 
0'6 6·986 0'038 -0'387 -0'060 0'053 0'014 -0'016 
0·7 5'913 -0'136 -0'422 -0,066 0'052 0'013 -0'016 
0'8 4·760 -0'342 -0'469 -0'073 0'050 0'013 -0'020 
0·9 3'505 -0'595 -0'543 -0'094 0'043 0'010 -0'022 
]'0 2'053 -0,929 -0'663 -0'136 0·023 -0'001 -0'024 
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seems to be acceptable for any practical aims. This conclusion is illustrated in Fig. 3 
for the most interesting case of three-segment circular probes, Q( = n!3. 

DISCUSSION 

Gelleral Nature of Normal FloII' Effects 

According to the previous sections, the extent of normal flow effects is characterized 
by the single dimensionless parameter ;.c. The corresponding normal flow coefficient 
A in the equation Vz = -AZ2 is unambiguously related to longitudinal changes of 
the shear rate over the electrode surface. The identity 

.1 = _l d2 l' - l d 2 V - l d q(") • - 2 zz / - 2 zx x. - 2 '< ~'\ (41) 

follows straightforwardly from the continuity equation. In other words, the non-zero 
normal velocity component close to the probe surface and the longitudinal variation 
of ~haear rates are two unseparable features of the convective process under consider­
ation. The parameter ;.c can also be expressed in the form 

% = (5q!'iJ. , (42) 

where .iq = 2AR gives the maximum difference between the shear rates at the centre 
and at the boundaric~ of the probe. Tn particular, the cases x = ± 1 correspond to 

T ABLE III 

Effect (,f normal flow component on directional characteristics of radial segments: Parameters 
Pim "r polynomial expansions to fundamental coefficients, Cm(;c) = 0'01 LPim;ci 

Pim for m 

:2 3 4 5 6 7 

12'613 0'701 -0'302 -0'063 0'050 0'015 -0'015 
~ -8,796 --0'726 -0'045 0'020 0'003 -0'002 -0'000 -
J --0'388 -0'493 -0'083 -0'006 0'002 0'005 -0'008 
:, -0,701 -0'0~5 -0'097 -0'021 0'018 -0'006 -0'008 

-0'165 -0'244 -0'041 -0'040 -0'003 -0'028 0'043 
h -0'777 -0'121 -0'044 0'026 -0'900 0'014 0'036 
7 0·121 0'230 0'040 0'063 0'009 0'063 -0'088 
~ 0'918 0·130 0'076 --0'033 0·142 -0'001 -0'067 
l) -0'113 -0,228 -0'061 -0'075 -0'019 -0'047 0'050 

10 -0'657 -0'092 -0'108 -0'006 -0'090 -0'013 0'034 
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the extreme conditions where the critical point of flow, q = 0, lies on the boundary 
of the probe. 

As shown in the previous section, the simple relation (26) between the total current 
i tot and the mean shear rate q holds with an acceptable accuracy even under the 
aforementioned extreme conditions. 

On the contrary, the normal flow component affects the directional characteristics 
substantially. As shown in Figs 3 and 4, the ratios of the maxima to the minima on 
the directional characteristics change strongly with u. Because just the ratios are 
essential for determining the flow direction, it can be said that the normal flow 
component affects the directional sensitivity of segmented probes. In particular, the 
sensitivity falls down considerably in the proximity of forward critical points, 
u --+ 1. Close to rear critical points, U --+ -1, the directional sensitivity is even larger 
than in the viscometric case, u. 

Normal flow Effects in Determining the Flow Direction 

The segmented probes are used primarily in determining the flow direction. We 
discuss here exclusively the three-segment probes, as three segments represent the 
minimum number sufficient to determine the flow direction unambiguously. 

0.5 r---------r-----y--, 

F 

0.4 

0.3 

o cose 

FIG. 3 

Directional characteristics for a sector of 
a geometrically perfect three-segment cir­
cular probe, 0( = x/3; solid lines - exact 
courses; dashed lines - empirical approxima­
tion, Eq. (40) 

FIG. 4 

Complete directional characteristic of geo­
metrically perfect three-segment probe under: 
a the viscometric condition, x = 0; b condi­
tions close to the forward hydrodynamic 
critical point, x = 0'9; c conditions close to 
the rear hydrodynamic critical point, x = 

= -0'9 
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From the mathematical standpoint the problem consists in solving the non-linear 
system of four equations 

idOl + i2 + i3) = F 1(e, x), 

i2/(il + i2 + i3) = F2(e,x), 

i3/(il + i2 + i3) = F3(e, x), 

i1 + i2 + i3 = i.(ii)E(x), 

(43a) 

(43b) 

(43c) 

(43d) 

with the terms on the left-hand side known from measurements. Note the obvious 
constraint F 1 + F 2 + F 3 = 1. The subscripts 1, 2, 3 refer to the three individual 
segments. The functions E, i., Fg , S E [1, 2, 3J must be known. For the moment, 
the probes are assumed to consist of geometrically ideal segments (sectors); the 
functions on the right-hand side of Eqs (43) are hence given by the theory. Three 
degrees of freedom in the equations correspond to the three unknown parameters 
e, x, q. 

The questions of existence, uniqueness, and parametric sensitivity of the solution 
are of primary importance, as the experimentally obtained terms on the left-hand 
side can be strongly affected by experimental errors. Instead of a thorough analysis 
of the problems suggested, we shall show an algorithm which guarantees the solvabi­
lity of the system (43a - d) for any admissible set of input data and implies an ad­
missibility check as well. 

In the first step, the subscripts are ordered according to the magnitudes of the 
com:sponding partial currents, 

(44) 

It i~ obvious from the typical examples of complete directional characteristics given 
in Fig. 4 that the ordered triple of the segment subscripts [p, q, r J specifies the flow 
direction e within an ambiguity less than 60°. In other words, six permutations of 
the subscripts 1, 2, 3 are in one-to-one relation to the six angle subintervals which 
fully cover the 3600 -range of all possible flow directions. 

This feature has been used in our previous work3 for constructing an efficient 
algorithm for treating the data taken under viscometric conditions. The same 
algorithm will work even under the considered three-parametric class of flow condi­
tions because the changes of x affect primarily the span between maximum and 
minimum partial currents, leaving the general structure of the complete directional 
characteristics essentially unchanged. This invariance is obvious from Fig. 3 for the 
three-segment probes. As a result. the first guess locates e into one of the six fixed 
subintervals. 

This guess is further improved in the second step. The ratio irjip can vary from 
unity (for the extreme case j{ = 1) to the theoretical maximum G(e)jc(e ± 2rt/3) ~ 
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;::::; 3 (for the other extreme case x = -1). If this ratio is beyond the given limits. 
the corresponding experimental point has been determined incorrectly and must 
be cancelled. Any ot the ratios i.ji b , (a, b) E [I. 2, 3], is independent of the 
shear rate magnitude ij and depends only on (e, x), as explicitely marked in Eqs 
(43a - c). For solving the problem, it is sufficient to consider only two independent 
linear combinations of these equations, as the third one is redundant because of the 
constraint Ifs = 1. The choice of these combinations can strongly affect the effi-

ciency of the resulting algorithms. The algorithm actually suggested is based on the 
fact that the following two combinations 

K == [iT - ip])j[ip + i4 + iT] , (45(/) 

T == [iq - (ip + iT )!2]![i r - ir'] , (45b) 

depend nearly selectively on only one of the unknown parameters, e and Y.. This is 
documented in Figs 5 and 6, where the plots of the corresponding theoretical func­
tions 

K*(y., e) == Fle, x) - Fie, x) = 2I-,(e, x) + Fq(e, x) - I, (40(/) 

T*(e, x) == 2Fq{e, x) - Fp(e, x) - Fr(e, x) = _ ~Fle,~) -! (46b) 
2[FT(e, x) - Fp(e, x)] 2[F,(e. x) + F,r(e. x)] - 1 

are given. 

I 
0.3 

I K* 

0.2 

8 "TI/6 

01 

-1 a 

FI~;. 5 

Combinations K* of the currents to indivi­
dual segments at different values of e 

05
1 

r" I 
I 

o l- 05 

Y -05 - ---..L ______ 1 
o TC/6 EJ -:-:/3 

FI( .. 6 
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As K depends only slightly on B, the single equation 

K = K*(x, B) (47a) 

provides a good estimate of x even for a rough estimate of B. An analogous conclu­
sion can be drawn concerning the equation 

T = T*(B, x) (47b) 

which provides a good estimate of B for a rough estimate of x. 

As a result, an efficient algorithm for the second step is based on the iteration 
loop which consists of solving alternately the equations K = K*(x, B) and T = 
= T*(B, x) with known values of K, T The solving routines can be constructed to 
work fast enough, as the functions K*( x, B) and T*( B, x) are monotonous and 
nearly linear with respect to their first arguments (Figs 5 and 6). The remaining 
parameter Zi can be expressed explicitly from Eq. (43d). 

C a Ii bration Data via ExIra poiating I he Visco11lctric Informal ion 

Real segmented electrodiffusion probes are far from being geometrically perfect. 
Individual segments differ in their shapes and areas. There are insulating insertions 
of finite thickness between them. Consequently, a calibration procedure must be 
used to determine the functions i*(ii), E(x), Fs(B, x). 

Until now, reliable procedures for the experimental calibration of electrodifrusion 
probes have been developed only for measurements under viscometric conditions 1 - 4, 

i.e. for x = O. We suggest here a semiempirical procedure for obtaining the functions 
i,(Zi), E(x), FlB, x) by an extrapolation of the viscometric calibration data. 

Let us first assume that a three-segment probe consists of geometrically perfect 
circular sectors with different angles iXs ' Then, the representation of the directional 
characteristics can be written in the following form: 

(48) 
//I 

where the individual sectors, S E [1,2, 3J, are distinguished by their angles iX, and 
angular shifts B, relative to the reference frame, B = O. of the entire probe. It fol­
lows from the rules (38) that Bm(iXs• x) can be expressed in the form 

( 49) 

where the coefficients hm(x) = Cm(x)jcm(O) are independent of IX. 
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The formula (48) can also be written in the following way: 

Fs(e, x) = Iso + L)m(X) [Ism cos (me) + gsm sin (me)], (50) 
m 

where the coefficients Ism, gsm depend exclusively on the angular sizes IXs of the indivi­
dual segments and their angular shifts es. These coefficients can be determined either 
from the theory or by a calibration experiment under visco metric conditions. In 
any case, the coefficients hm are calculated according to the theory, see Table III 
and Eq. (40). For the probes consisting of circular sectors of different angles, the 
suggested procedure provides correct calibration data, assuming negligible effect of 
insulating gaps between the segments. We expect that this procedure will provide 
acceptable results for real electrodiffusion as well, because any effects of microscopic 
imperfections of the active segments and the insulating gaps are involved in the 
starting calibration data obtained experimentally under viscometric condition. 

CONCLUSIONS 

The total limiting diffusion current to a segmented electrode depends nearly exclusively 
on the shear rate q at the centre of the probe. The normal velocity component and the 
corresponding changes of the local wall shear rate have only minor effect. 

The ratios of the currents to individual segments of a three-segment electrodif­
fusion probe are extremely sensitive to both the flow direction and the normal flow 
component. By using the algorithm suggested in the present work, the triple signal 
can be processed to obtain data about these two additional kinematic parameters. 
A semiempirical method is suggested for the application of this algorithm to real 
probes by using only the viscometric calibration data. 

The authors are indebted to Dr Pavel Mitschka for his helpful criticism during the preparatory 
stage of this article. 

LIST OF SYMBOLS 

A 

Bm(rJ., e) 

CmCx) 
c(x,y.z) 

Co 
D 

d x ' dy' dz 

E(x) 
F(e, x) 

FJe, x) 

J,m' gsm 
G( e, IX) 

normal flow coefficient, Eq. (5) 
Fourier coefficients of directional characteristic, Eqs (37), (38) 
fundamental Fourier coefficients, Eqs (38), (39). Table II 
concentration field of depolarizer 
bulk concentration of depolarizer 
diffusivity of depolarizel 
partial derivatives 
correction of total currents for normal flow effects, Eqs (27), (28), Table I 
directional characteristic of a given circular sector, Eqs (35), (36) 
directional characteristic of .I-th segment of circular probe, Eq. (48) 
moth Fourier coefficients for .I-th segment under viscomelric condition, Eq. (50) 
normalized current to a circular sector under given flow condition, Eqs (29), (34) 
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correction of moth Fourier coefficients for normal flow effects, Eq. (49) 
normalized current to circular sectors in basic position, Eqs (30), (31), (34) 
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current to circular sectors in basic position, i.e. with one of its arms paralIel to the 
flow direction 

j(€J, x) 

/(xo. xL) 

itot 

j. 

Pim 
q(x) 

l/ 
R 

T 
T* 
Vx' vY' Vz 

x 

XO' XL 

Y 
:: 

w 

1-

P 
e 
e. 
x 

current to a segment, Eq. (29) 
current to a strip 
total current to a probe 

total current under viscometric condition to a strip probe, Eq. (10), or a circular 
probe, Eq. (26) 
partial currents to strip segments 
partial currents to segments of a circular probe 
transport coefficient for a strip, Eqs (8), (9) 
transport coefficient for a circle, Eqs (17), (20) 
e-insensitive combination of partial currents, Eq. (45a) 
theoretical representation of K, Eq. (46a) 
length of a strip probe along the flow 
electric charge corresponding to the electrochemical conversion of 1 mole of 
a depolarizer 

coefficients in the polynomial representation of Crn(x), Eq. (39), Table III 
longitudinal profile of shear rates 
shear rate magnitude at the probe centre 
radius of a circular probe 
angular variable 
x-insensitive combination of partial currents. Eq. (45b) 
theoretical representation of T, Eq. (46b) 
velocity components 
longitudinal coordinate (parallel the flow) 
x coordinates of the leading and rear edges of a strip. Fig. 1 
transversal coordinate (across the flow) 
normal coordinate (perpendicular to the wall) 
strip width (across the flow) 
angular size of a circular sector, Fig. 2 
angle of a circular sector in basic position, Fig. 1 
angular shift of a segment or of a probe. Fig. 2 
angular shifts of the segments constituting circular probe, Eq. (48) 
dimensionless measure of the normal flow effects, Eqs (13), (19) 
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